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Abstract 
NAPSAC is a software package to model flow and transport through fractured rock.  The models 
are based on a direct representation of the discrete fractures making up the flow-conducting 
network.  NAPSAC uses a stochastic approach to generate networks of planes that have the same 
statistical properties as those that are measured for fractures in field experiments.  The software is 
based on a very efficient finite-element method that allows the flow through many thousands of 
fractures to be calculated accurately. 
 
This Technical Summary Document provides a list of the current capabilities of the program and a 
description of the numerical methods used. 
 
 
NAPSAC is a software package to model flow and transport through fractured rock.  The models 
are based on a direct representation of the discrete fractures making up the flow-conducting 
network.  NAPSAC uses a stochastic approach to generate networks of planes that have the same 
statistical properties as those that are measured for fractures in field experiments.  The software is 
based on a very efficient finite-element method that allows the flow through many thousands of 
fractures to be calculated accurately. 
 
This Technical Summary Document provides a list of the current capabilities of the program and a 
description of the numerical methods used. 
 
 

 
 
 
  
 

COPYRIGHT AND OWNERSHIP OF NAPSAC 
 

The NAPSAC program makes use of the TGSL subroutine library. 
All rights to the TGSL subroutine library are owned by AMEC. 

 
All documents describing the NAPSAC program and TGSL subroutine library are 
protected by copyright and should not be reproduced in whole, or in part, without 
the permission of AMEC. 

 
Funding provided by United Kingdom Nirex Limited towards production of the documents is 

acknowledged. 
 

NAPSAC also makes use of the freely available LAPACK linear algebra library. 
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Preface 
NAPSAC is a software package to model flow and transport through fractured rock.  The models 
are based on a direct representation of the discrete fractures making up the flow-conducting 
network.  NAPSAC uses a stochastic approach to generate networks of planes that have the same 
statistical properties as those that are measured for fractures in field experiments.  The software is 
based on a very efficient finite-element method that allows the flow through many thousands of 
fractures to be calculated accurately. 
 
The following documentation is available for NAPSAC: 

� NAPSAC Technical Summary Document; 

� NAPSAC On-line Help; 

� NAPSAC Verification Document; 

� NAPSAC Installation and Running Guide. 
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NAPSAC Capabilities 
Simulation of fluid flow and transport in fractured rock is an essential tool for the study of water 
resources, oil and gas reservoir management, assessment of underground waste disposal 
facilities, evaluation of hot dry rock reservoirs, and for the characterisation and remediation of 
contaminated land. It can be used to interpret field and laboratory data, to validate conceptual 
models, to make quantitative predictions, and to develop practical solutions for a range of 
environmental, reservoir engineering, and civil engineering problems. 
 
NAPSAC is a finite-element software package for modelling fluid flow and transport in fractured 
rock. A discrete fracture network (DFN) approach is used to model fluid flow and transport of 
tracers and contaminants through the fractured rock. NAPSAC incorporates fracture generation, 
flow simulation, upscaling, transport and 3D graphics capabilities using GeoVisage. The Graphical 
User Interface (GUI) to NAPSAC allows models to be generated and analysed quickly. A job 
submission (‘batch’) facility is included in the GUI that allows additional options not yet 
implemented in the GUI to be accessed - these features are indicated below

†
.  

 
NAPSAC has been developed over a period of more than15-years and includes a number of 
sophisticated capabilities, such as: 
Geological modelling: 

� NAPSAC has the flexibility to model a variety of scales varying from well/borehole scale to 
regional/reservoir scales. Detail can be included to model heterogeneity of a single 
heterogeneous fracture as well as models with many tens to millions of fractures at a 
regional or reservoir scale. 

� the DFN approach allows users to compare aspects of their conceptual geologic models 
and field observations with simulated models.  This comparison includes fracture 
orientation, size, transmissivity and flow distribution. An examination of the simulated 
network can be performed using hypothetical cores, stereonets, fracture maps and 
connectivity analysis. 

� generation of regular and irregular meshes and structural grids (e.g. ZMap, VIP, FEMGEN 
and a CAD format); 

� inclusion of deterministic fractures specified within the NAPSAC data or by importing a 
fracture file (e.g. GOCAD Vset, GOCAD Tsurf, Seisworks pointsets and other international 
formats). Deterministic Faults (or structures) can be used to control populations of 
stochastic fractures (i.e. proximity or ‘Damage Zone' models). For example, NAPSAC 
allows the clustering of fractures around parent fractures, random points or surfaces. 
NAPSAC allows spatially varying fracture densities based on 3D maps of fracture drivers; 

� variable distribution laws for stochastic fracture parameters. NAPSAC can generate 
stochastic fractures from a wide variety of probability distribution functions. Not just 
Fractal! 

� coupling of distributions/parameters for the same feature i.e. length-aperture relationships. 

� areal / volumetric distribution of stochastic fractures can be imported from external map or 
grid data e.g. bed thickness, curvature (‘strain’), lithological (mechanical) variation. 

� dynamic behaviour of ‘production fractures’ and present-day stress can be incorporated. 

� all scale ranges, from core observation to seismic scale, can be simulated and integrated 
into the final model. 

� high permeability ‘matrix streaks’ may be incorporated into models as extra flow conduits. 

� flow in the matrix can be represented by additional flow channels 
NAPSAC is able to: 

� simulate steady-state or transient flow in a fracture-network; 

� enable steady-state calculations to be performed on very large networks, because it uses 
an efficient finite-element scheme; 
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� calculate the full equivalent continuum permeability tensor including off-diagonals, 
principal values and principal directions. This is automated to sample flows in several 
different directions. This can be used for upscaling, analysis of scale dependencies and 
determination of the representative elementary volume (REV); 

� calculate porosity and inter-fracture matrix block size; 

� identify connected fracture clusters around wells; 

� predict transient pressures and drawdowns at well bores for various types of pump tests; 

� calculate steady-state and transient inflows to tunnels and shafts; 

� calculate the effects of hydro-mechanical coupling. The hydraulic aperture is coupled to a 
stress distribution based on an analytical description of the stress field due to either rock 
overburden or a radial stress around a tunnel; 

� simulate tracer transport through a network using a stochastic particle tracking method. 
Output

†
 includes plots of breakthrough curves for many thousands of particles, particle 

tracks, swarms of particles at specified times or the points of arrival on the surfaces of the 
model. This can be used to calculate dispersion of a solute transported by the 
groundwater; 

� simulate mass transport for a variable density fluid. This can be used to model coupled 
groundwater flow and salt transport

†
; 

� simulate unsaturated flow in fractured rocks; 

� 
†
analysis of percolation between surfaces. 

 
NAPSAC can be used for the following applications: 

� simulation of a range of hydrogeological tests (hydraulic borehole/well tests, including 
constant, head, pressure and flow tests); 

� site and regional scale modelling to determine the effects of various forms of fracture flow 
on pressure distributions, flows and travel times to discharge points under natural 
conditions; 

� to understand and simulate the behaviour of fracture-influenced sites/reservoirs by being 
able to parameterise and justify heterogeneous continuum models. For example, the 
estimation of equivalent parameters for input to conventional dual-porosity simulators; 

� simulation of solute transport (tracer) experiments;  

� simulation of the hydraulic impact of a tunnel or shaft construction; 

� simulation of various simple hydromechanical models for the purpose of estimating the 
impact of rock overburden and in-situ stress. 

 
NAPSAC has been used in the following industries: 

� water resources for the purpose of hydraulic test and tracer simulation, fractured reservoir 
estimation and parameterisation, and remediation studies (such as the estimation of 
fracture flow in dual-porosity systems).  In addition, it can be used to model saline 
intrusion and unsaturated flow; 

� deep radioactive waste disposal, as both a tool useful for site-characterisation and safety 
assessments (simulation of hydrogeological tests and estimation of flow distributions and 
travel times to the biosphere); 

� oil and gas industry to aid well planning, simulation of various well tests (PBU etc), and the 
parameterisation of oil simulation software by calculation of up-scaled equivalent 
continuum parameters (permeability, porosity and matrix block-size and distribution); 

� hot-dry rock studies to estimate connectivity and parameters (permeabilities), to help 
analyse the effectiveness of the fractured reservoir; 
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� civil engineering projects concerned with construction or groundwater remediation in 
fractured rock.  This includes the estimation of water ingress due to excavation of tunnels, 
studies of underground oil caverns, dam construction in fractured rocks, remediation or 
containment of contaminated fractured sites. 



 
  

 
AMEC/ENV/CONNECTFLOW/12  Page 10 

AMEC Public 

1 Introduction 
The NAPSAC fracture-network modelling software was developed by AMEC Limited, to simulate 
flow and mass transport through fractured rock. 
 

1.1 Report Structure 
The following Sections present the detailed technical specification of NAPSAC.  A brief discussion 
of the Discrete Fracture Network (DFN) approach is given in Subsection 1.2. 
 
The technical description is split into three phases: 

� model generation (Section 2); 

� calculations (Section 3); 

� and output (Section 4). 
 
These correspond to the major steps in numerical modelling. A description of the complementary 
GeoVisage for NAPSAC software package for 3D visualisation of NAPSAC results is given in 
Section 5. 
 
Finally, the Quality Assurance programme employed for development and maintenance of 
NAPSAC is described briefly in Section 6. 
 

1.2 The Discrete Fracture Network Approach 
In many geological formations, the primary flow is through a connected network of discrete 
fractures. This provides a very heterogeneous system, and the fracture-network geometry can lead 
to dispersion of any solute being transported through the formation. It is often necessary to show 
sufficient understanding of the flow system to give confidence that predictions of the large-scale 
properties of the flow system can be made from the results of field-scale investigations. In order to 
build confidence, it is important to show a very detailed understanding of field experiments that are 
generally on scales at which the influence of the fracture-network geometry is significant.  The 
geometry and connectivity of the fracture system and the possibility of hydraulically important 
pathways through the network can play an important role in determining the scale dependence of 
the effective properties of the system.  Indeed, one of the early motivations for the development of 
the DFN approach was to develop an understanding of the scale dependence of the effective 
dispersion parameters for radionuclide transport through fractured rock, which had been inferred 
from field data ([2] for example). 
 
In the DFN approach, the geometry of the fracture-network is accounted for explicitly. The 
approach is needed to describe or predict aspects of the performance of the fractured system 
where the geometry of the fracture-network plays a significant role. Some examples of such 
circumstances are: 

� representations of any flow experiments where the fracture connectivity is important, 
which in practice means almost all interpretations of field experiments where a detailed 
understanding is needed; 

� prediction of the effective flow properties of the fracture-network system and of the scale 
dependence of effective properties; 

� prediction of the effect of the fracture-network geometry on the effective dispersion for 
solute transport; 

� prediction of the effect of the fracture-network geometry on the effective hydraulic 
diffusivity of the pressure field in response to a pressure change and the inferred radius of 
influence of pressure tests. 
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From the above list, it can be seen that an understanding of the role of the fracture geometry can 
be important in almost all aspects of an investigation of a fractured rock system. The two main 
reasons that such discrete models are not more commonly used are the complexity of the models 
and the fact that stochastic models inevitably require uncertainty to be addressed formally. 
 
The complexity means that many data are required to characterise fracture systems adequately.  
Whilst there are still issues to be resolved in the experimental characterisation of fracture-network 
flow geometry, a number of research projects for the radioactive waste industry have demonstrated 
the feasibility of collecting suitable basic input data [3, 4, 5, 6]. Understanding fracture channelling 
and the extent of the flow wetted surface of the fracture are still research tasks, but simple 
assumptions can be made and the other data interpreted consistently so that the resulting fracture-
network geometry reproduces key features of the physical network.  In many cases, however, there 
will be a balance between the benefits of a more detailed representation of the system, and the 
increased cost of collecting data for which there may be significant uncertainty. 
 
The second reason why the discrete fracture-network approach is not more widely used is the need 
to treat predictions in a probabilistic framework and consider the uncertainty due to the details of 
the fracture geometry directly.  Fracture-network models are necessarily stochastic since it is not 
possible to determine the location and extent of each flow-conducting or mechanical break in the 
rock.  Instead a stochastic approach is used, in which the statistics of the fracture system are 
determined and realisations of the fracture-network geometry that exhibit the same statistics as the 
physical system are generated and used for simulation.  This means that a discrete fracture-
network approach does not predict the result of a given experiment.  Instead, it predicts a 
probability distribution of equally likely results given the stochastic description of the fracture 
geometry and properties.  This realisation-dependent uncertainty corresponds to a lack of 
knowledge of the precise fracture geometry.  In many respects this is an advantage of the 
approach over deterministic models since the uncertainty is real and unavoidable.  Conventional 
approaches often make single-valued predictions, however this is simply not facing up to the reality 
of uncertainty. 
 

1.3 Applications 
Applications of NAPSAC include: 

� interpreting site characterisation data; 

� modelling of flow and transport in regional fracture-network systems; 

� obtaining effective properties as data input to large-scale effective porous medium 
models. 

 
In site characterisation programmes, NAPSAC has been used to validate the fracture network 
approach by comparing data from hydrogeological experiments in fractured rock (e.g. well tests) 
against model predictions.  As part of the assessment of post-closure performance of potential 
deep repositories, NAPSAC fracture-network models have been used to predict the groundwater 
pathways by which radionuclides released from a repository might return to the environment.  
Effective properties have been obtained using NAPSAC for input into large-scale 3-D porous 
medium models or reservoir simulators (for example [7]). 
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2 NAPSAC Model Generation 
The first phase in a NAPSAC calculation involves the: 

� definition of the model domain; 

� fracture generation; 

� inclusion of engineered features (boreholes, tunnels or shafts); 

� calculation of fracture intersections. 

� provision of boundary conditions; 
 
These processes are described in this Section. 
 

2.1 Model Domain 
The model is defined within a domain formed from the union of a number of (possibly irregular) 
hexahedra or `region elements'. The region elements are defined by supplying a list of the 
coordinates of the vertices belonging to each element. Where the faces of two region elements are 
joined, the four corners of the adjacent sides must be coincident. The faces of the region elements 
need not be planar. In general, they form bilinear surfaces. An example of a complex flow domain 
is shown in Figure 1. 
 

 

Figure 1 An example of a complex flow domain built from 37 irregular hexahedra.  
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2.2 Fracture Generation 
An individual planar fracture is completely defined by: 

� the location of its centre; 

� three orientation angles (dip angle, ψ, dip direction, α, and orientation, ω); 

� the lengths of each side (or in the case of square fractures, a single length); 

� an effective hydraulic aperture or transmissivity (and possibly the variation of aperture 
within the fracture). 

 
The definition of the orientation angles (ψ, α, ω) relative to the Cartesian coordinate system (x, y, z) 
is shown in Figure 2. It is usual to orient the axes such that x is east, y is north, and z is vertically 
upwards. 
 
Fractures can either be `known'  (deterministic) in which case the above properties are specified 
explicitly, or `random' in which case the fracture properties can be sampled from a wide range of 
statistical distributions. 
 

z

x

y

n

α

ψ

ω

 

Figure 2 The angles describing the orientation of a fracture, in relation to the coordinate 

axes and the normal to the plane, n. ψ: the dip angle, α: the dip direction, ω: the 

orientation angle. 

2.3 Fracture Network Characterisation 
This section describes the main methods for inferring fracture-network geometries from field 
measurements of the fracture-network properties [8,9]. This is the first major task the user faces in 
three-dimensional simulations. Analogous methods are used in the derivation of appropriate two-
dimensional equivalent networks. 
The key parameters used to characterise a fracture-network are: 

� identification of independent fracture sets; 

� the distribution of fracture orientations; 

� the statistical process for generating the fracture locations in space; 
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� the fracture density; 

� the distribution of fracture lengths; 

� and the distribution of fracture transmissivities. 
 
When characterising the fracture orientation distribution, it is generally found that the fractures can 
be divided into a number of distinct fracture sets.  These sets of fractures comprise fractures that 
can be characterised by common distributions of parameters, and which have a common origin and 
history. 
 
These fracture sets are often defined in terms of their orientation distributions that tend to be 
clustered around preferred orientations of the normals to each fracture plane projected on to a 
lower hemisphere.  This definition of the characteristic orientation is best achieved by using 
conventional statistical methods to identify distinct clusters.  The fractures can then be separated 
into their distinct sets and further parameters inferred for each set independently. 
 
The distribution of fractures has commonly been assumed to be uniform in space with just a single 
fracture density being used to specify how many fractures to generate.  An equivalent approach to 
using a fracture number density is to generate fractures up to a specified area density of fracture 
surfaces per unit volume. Sampling the various distributions of the parameters generates the 
fractures. The positions of the fracture centres are generated assuming a Poisson process.  Care 
must be taken to avoid edge effects, and this is usually accomplished by generating the fracture-
network in a larger region than that to be simulated.   
 
The fracture density may be obtained from the spacing of fractures along a scan line on a mapped 
exposure, or from a fracture log along a borehole or core.  Each distinct set of fractures has its own 
characteristic distributions of properties, and the density of each of these fracture sets is usually 
determined independently. For a given fracture set, the number density, ρ, is given in terms of the 

mean spacing of intersections along a straight line, ,s by: 

 
1)( −= Xs ρ ,        (2.1)  

   

where X is the mean projected area of the fractures onto a plane perpendicular to the 
measurement line. 
 
The fracture set length distribution is one of the more difficult parameters to infer since we have 
only one- or two-dimensional data from which to infer a length distribution that will only be fully 
determined by a three-dimensional description.  A number of assumptions need to be made at this 
stage.  First, it is difficult to characterise the shape of the transmissive area of the fracture plane.  It 
is generally assumed that this surface has a simple geometry.  In NAPSAC, it is assumed to be 
rectangular. 
 
Once the fracture shape has been fixed, then one can use analytical results giving the relationship 
between the distribution of fracture lengths to the distribution of fracture trace lengths as measured 
on a large two-dimensional trace plane intersecting the network. For example, for square fractures 
of side length distribution, L, the moments of the length distribution, Li, are related to the moments 
of the corresponding distribution, t, of fracture traces measured on a large trace mapping plane by: 

1
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where Li are the i-th moments of the length distribution and ti are the i-th moments of the trace 
length distribution.  Similar formulae can be obtained for higher moments. A common approach is 
to make an assumption as to the mathematical form of the distribution of fracture lengths and then 
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either use these simple formulae between the means and second moments of the distribution, or to 
simply calibrate against statistics from a specific trace map.  In fact the trace length to fracture 
length relationship is quite insensitive to the precise shape assumed for the fractures and there is 
relatively little difference between the results for circular or square fractures.  A more significant 
assumption is the choice of the mathematical form of the fracture length distribution. Typically, log-
normal or power law distributions are used. Although these often result in a good fit between the 
main parts of the simulated and measured trace length distributions, the goodness-of-fit of the tails 
of the two distributions is often less good.  A poor match in the tail of the distribution may result in 
the existence of extreme, unphysical fractures with very long traces.  These are quite unimportant 
to many of the statistics used to infer parameters but may have a much more important role in the 
network flow. 
 
Finally, the hydraulic properties of the fractures need to be defined. The usual assumption is that 
some form of the parallel plate law for plane fracture flow applies, but rather than measure a 
distribution of apertures directly, a more reliable approach is to infer a distribution of fracture 
transmissivities.  This too, generally relies on an assumption as to the form of the probability 
distribution of fracture transmissivities. Generally the log-normal distribution is used.  With this 
distribution and a specified fracture spacing, then the mean and standard deviation of fracture 
transmissivities can be related to the mean and standard deviation of short interval packer tests in 
boreholes so long as it is assumed that the transmissivities of fractures intersecting the test section 
add to give the transmissivity of the test section. Strictly, fracture connectivity away from the 
borehole will affect the packer test results, but for short tests, the radius of influence of the test will 
be small and the measurements can be taken to correspond to the summation of local 
transmissivities.  The fitting process involves typically using maximum likelihood estimators and in 
general will require numerical evaluation of the best estimates.  Again, the results of the fracture 
property interpretation should be checked by simulation of the measurement process and it may be 
appropriate to infer the parameters of the distribution by calibrating directly against the 
experimental data (see [9] for more detail). 
 
An alternative approach to generating the fracture-network, which is often used, is to generate 
fractures using an initial approximation and test the resulting network by simulating the 
experimental measurement procedures.  Then the network is modified to improve the 
correspondence between, for example, the numerically simulated log and the physical log.  This 
calibration procedure is particularly appropriate when simulations are made based on more 
complex statistical descriptions of the fracture properties and spatial densities.  Such simulated 
measurements should in any case be used to check the validity of the interpretation of the network 
parameters. 
 

2.4 Known Fractures 
For known (or deterministic) fractures, all properties are specified either within the NAPSAC data or 
imported from a formatted file. There are several instances when the use of known fractures is 
appropriate. Firstly, when large-scale fracture zones are defined. The appropriate transmissivity for 
such zones may be obtained from hydraulic tests or by calculating an effective transmissivity based 
on a local scale stochastic model of the fracturing around the zone.  
 
Secondly, where the network has been well characterised, the stochastic network may be replaced 
by the set of fractures that have been measured. For example, a stochastic network of fractures 
may be generated based on a statistical analysis of the data from several boreholes. The random 
fractures around each borehole can then be replaced by the observed fractures at the borehole. 
This is a simple method of conditioning random simulations. 
 

2.5 Random Fractures 
Up to 50 separately parameterised sets of random fractures can be defined in a NAPSAC model. 
The locations of the centres of the fractures are distributed uniformly within a cuboidal region 
whose boundaries are set by the user. This region should be sufficiently larger than the flow 
domain, bearing in mind the expected size of the fractures, so that there is no reduced density of 
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fractures near the edge of the flow domain. For each of the other fracture properties, the user 
specifies the distribution type and its parameters. 
 
In NAPSAC the following distributions are available: 

� constant; 

� uniform; 

� normal; 

� log-normal; 

� two parameter negative exponential; 

� triangular; 

� log-triangular; 

� univariate Fisher (for dip angles and dip directions only); 

� truncated log-normal; 

� power-law (for fracture lengths only). 
 
Given this information, fractures are generated randomly up to a user-prescribed density. A typical 
NAPSAC generated fracture-network is shown in Figure 3. 
 

 

Figure 3. An example of a fracture-network generated within a cuboid flow domain. The 

fractures are coloured according to the logarithm of transmissivity: red for high 

transmissivity, blue for low. 
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2.5.1 Variable Apertures on Fractures 

As well as random fractures, each with a uniform aperture, NAPSAC can represent the random 
variations of aperture within a given fracture. This option may be specified for some or all of the 
sets of random fractures, and also on a known fracture. The local values of the aperture are 
generated from a log-normal distribution with standard deviation prescribed by the user. With a 
known fracture, the mean value of the distribution is simply the aperture given by the user. 
 
In the case of a random fracture, a value is first randomly sampled in the same way as for a 
uniform fracture, but this value is then used as the mean aperture about which the local aperture 
distribution on the fracture is generated. Note that the standard deviation of the aperture 
distribution for a single fracture need not be the same as the standard deviation of the mean 
apertures of the fracture set. 
 
In reality, the apertures at nearby points on the same fracture may well be correlated to some 
extent. To represent this, NAPSAC provides the user with the facility to specify a correlation length 
scale and one of 3 correlation functions (note that these are correlations for the distribution of the 
logarithm of the aperture): 
 

3

3

1
22

2
1)(

ll

ξξ
ξρ −−=                           ,l<ξ  

           0=                                              ;l≥ξ  
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2 ξξξρ −−=                 ,l<ξ  

           0=                                              ;l≥ξ  

 

where ξ  is separation and l is the correlation length scale. If uncorrelated apertures are required, 

this may be achieved by using either correlation function 1 or 3, with a zero correlation length. 
 

2.5.2 Fracture Sub-division (`Tessellation') 

A simpler method of generating a variable transmissivity on each fracture (tessellated fractures) is 
to sub-divide the fractures into smaller fractures (sub-fractures) according to an approximate 
correlation length, and generate the transmissivity on each sub-fracture independently. In this way 
fractures are generated according to a specified length distribution, but then sub-divided such that 
no sub-fracture is longer than the correlation length. Hence, the number of fractures increases but 
the fracture area density is maintained. This method is more appropriate for large random 
networks. 
 
Another reason for sub dividing fractures is one of discretisation. The number of finite elements 
used to discretise each fracture is similar on every fracture, irrespective of the fracture length. If 
fracture lengths vary by orders of magnitude then large fractures may be under-refined, and small 
ones over-refined. Hence, tessellation can be used to split large fractures into a network of sub-
fractures of a more uniform size, and consequently a more uniform discretisation. In this case the 
transmissivity of the sub-fractures is inherited from the transmissivity of the tessellated-fracture 
from which it was created. 
 

2.6 Engineered Features 
Since field experiments in fractured rock usually involve boreholes, a model feature (`borehole') is 
provided to facilitate their incorporation in simulations. There is a further feature (`shaft') to 
represent engineered features of larger radii such as tunnels or shafts. Both types of feature are 
specified by the coordinates of the two ends and a radius. Both models add extra flow connections 
to the network where the engineered features intersect fractures. Generally, if the radius of the 
engineered feature is small compared to the length of fractures then the borehole submodel is 
adequate, otherwise greater accuracy is gained by using the shaft model. For a borehole only the 
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fractures intersecting a line joining the two ends are hydraulically joined to the borehole. For a shaft 
all fractures intersecting a cylinder with the specified radius and axis are hydraulically joined to the 

shaft. The axial hydraulic conductance (units of 
13 −

sm ) of the feature is calculated from the radius 

or from a specified permeability. The properties of a skin layer due to grouting or skin effects can 
be specified to limit radial flow. Section 3.5 gives more details on the simulation of flow around 
engineered features. 
 
Any two engineered features may be joined hydraulically. Hence, curved boreholes can be 
represented by several joined boreholes of varying inclination. Figure 4 gives an example of a 
complex model with many sections of engineered feature joined together to form a spiral tunnel. 
Two vertical shafts are also shown. 
 

 

Figure 4 An example representation of a complicated system of tunnels (spiral) and 

shafts (vertical). Some region element edges, two large deterministic fractures, 

and a few random fractures are also shown. 
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2.7  Fracture Intersections 
Once the fracture-network has been generated, the next step is to calculate all the fracture 
intersections. This allows an interpretation of the fracture-network connectivity. Intersections 
between the planes and the boundaries of the flow domain are calculated, and part or all of a 
fracture falling outside the flow domain is discarded.  
 
The intersections are determined by solving the equation for the intersection of the two fracture 
planes using elementary geometry.  In order that large networks can be handled the search for 
intersections is optimised by dividing the overall region into subregions and determining the planes 
wholly or partly within each subregion, and then only testing planes in the same subregion for 
intersections.  In this way the asymptotic cost of the calculation of the intersections is proportional 
to the number of planes rather than the square of the number of planes. The flow field is discretised 
by assigning a number of nodes, referred to as the global flow nodes, to each intersection. 
 

2.8 Boundary Conditions 
Boundary conditions are set on the boundaries of the flow domain. By default, NAPSAC treats any 
boundary for which no condition is set as impermeable. For a permeable boundary, either a 
pressure distribution or a fluid mass flux can be specified. A pressure distribution can be defined in 
three ways: 

� a constant value may be set over the whole surface; 

� a linear pressure variation may be specified; 

� the pressure can be interpolated (bilinearly) from a set of pressure values at the region 
element vertices. These pressure values can be specified in the input data file or 
interpolated from a regular mesh that is read from a file. 

 
For flux boundary conditions a uniform fluid mass flux in units of kgm

-2
s

-1
 is specified over a 

boundary surface. A mass flux enters each fracture that intersects the surface. The amount of flux 
entering a particular fracture is weighted according to the length of the fracture’s trace, such that 
the total mass flux entering the surface equals the mass flux value specified multiplied by the area 
of the surface. 
 
In addition to the boundary conditions set on the flow domain boundaries, the user may specify the 
pressure or flux on individual engineered features. 
 
For mass transport the salinity can be specified on selected surfaces. The default boundary 
condition for this case is zero dispersive flux (an outflow condition). 
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3 NAPSAC Calculations 
This Section details the various types of calculations that can be performed using NAPSAC. 
 

3.1 Geometric Analysis 
Prior to a flow calculation useful information can be gained by analysis of the fracture intersections.  
One of the main characteristics of a fracture-network that controls the behaviour of the flow is the 
connectivity of the network. 
 

3.2 Percolation Analysis 
The most basic measure of connectivity is whether the fracture-network has a connection across 
the region or not.  This depends on the fracture density and the change from unconnected to 
connected networks is predicted by the percolation threshold.  The percolation threshold gives the 
density at which the size of connected clusters of fractures suddenly increases from a relatively 
small typical cluster size to the existence of a percolating cluster that spans the region.  The 
percolation threshold is quite a sharp transition: a small increase in fracture densities will change 
the network from one for which no realisations have connections across the model region to one for 
which all realisations are well-connected [10].  This percolation threshold depends upon the 
statistical properties of the network, but for random networks there is a much more significant 
dependence on the dimension of the network geometry.  Three-dimensional networks become well 
connected at much lower fracture densities than two-dimensional networks.  
 
The NAPSAC percolation option builds the network one fracture at a time. As each individual 
fracture is included, a list of fracture clusters is maintained and updated. If the fracture intersects 
any fracture belonging to an existing cluster it is added to the appropriate cluster list. If it intersects 
with two or more disjoint clusters, then the cluster lists are combined. If it is isolated, then a new 
cluster list is started. When a single cluster connects all the relevant boundary surfaces, percolation 
has occurred, and any remaining fractures in the original network may be discarded if required. 
 

3.3 Steady-State Constant Density Groundwater Flow 
Steady-state constant-density groundwater flow in a fracture network can be modelled in the 
current version of NAPSAC.  The basic approach is very simple.  Groundwater flow in each fracture 
is modelled numerically.  Then the flow in the overall network is obtained by combining the flows in 
the different fractures, using the conditions that 
 
(i) the groundwater pressure is continuous between two intersecting fractures; 
(ii) groundwater is conserved at an intersection, so that groundwater which flows out of one 

fracture flows into the other. 
 
NAPSAC uses a Galerkin finite-element approach to modelling.  The Galerkin approach starts from 
the weak form of the governing equation, which is derived by multiplying the governing equation by 
an arbitrary test function in a suitable function space, and integrating over the domain, integrating 
by parts terms involving high-order derivatives (see Equation (3.4) below).  The benefit of this 
manoeuvre is that the weak form is equivalent to the original equation for sufficiently smooth 
functions, but it is also applicable to functions that are not as smooth, such as the functions derived 
by finite-element discretisation. 
 
In the finite-element method, the domain is discretised into ‘finite elements’ of simple shape.  On 
each element, a quantity of interest is approximated by a simple function, such as a polynomial, 
determined by the values at a small number of points, or nodes on the element.  This is equivalent 
to approximating the quantity of interest as a linear combination of certain basis functions that are 
associated with the nodes; the basis function associated with a node taking the value 1 at the node 
and 0 at all the other nodes.  The discretised equations are obtained by taking the test functions in 
the weak form to be the set of basis functions for nodes where the value of the quantity is not 
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specified by a Dirichlet boundary condition.  These equations are supplemented by the Dirichlet 
boundary conditions. 
 

                      

Figure 5 The finite element discretisation of a fracture in NAPSAC and the approximation 

of intersections with other fractures by lines along finite-element boundaries. 

In NAPSAC, the finite-element method is applied on two levels: individual fractures and fracture 
intersections.  Individual fractures are discretised into triangular elements as shown in Figure 5.  
On each element, the residual pressure  

)( 00 zzgPP
R −+= ρ   (3.1) 

is approximated as a linear function.  (Here 
 

P  is the groundwater pressure; 

0ρ  is a reference value of the groundwater density; 

z  is the elevation; 

0z  is a reference elevation.) 

 
As noted above, this is equivalent to approximating the residual pressure on the fracture as a linear 
combination of the ‘local basis functions’.   
 
On the scale of the overall network, the residual pressure is characterised by its values at certain 
‘global nodes’ associated with the fracture intersections, which are approximated by lines along the 
boundaries of the elements representing the fracture (see Figure 5).  On a fracture, the global basis 
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function IΨ  corresponding to a global node I  on one of the intersections with other fractures is 

taken to be the finite-element solution for steady-state groundwater flow on the fracture in the case 

in which the residual pressure is specified to be 1 at global node I  and 0 at all the other global 

nodes on the fracture. 
The steady-state groundwater-flow equation in the fracture is 

0
12

3

=







∇⋅∇− R

P
e

µ
  (3.2) 

where 
ρ       is the groundwater density; 

µ  is the groundwater viscosity; 

∇  denotes the two-dimensional gradient operator in the fracture. 

The possibility that the fracture aperture, and hence fracture transmissivity, may vary over the 

fracture surface is allowed.  The transmissivity T is generally taken to be related to the fracture 

aperture e  by the cubic law 

µ

ρ

12

3
ge

T =   .  (3.3) 

 
on the basis of flow between parallel plates [11]. 
 
The weak form of Equation (3.2) is 

0
12

3

=⋅+∇⋅∇ ∫∫
BF

R
wP

e
w fn

µ
  ,  (3.4) 

where 

F  is the fracture; 

B  is that part of the boundary of the fracture on which the flux is specified.  Note that 

B  includes both sides of intersections with other fractures; 

n  is the unit normal to the boundary directed out of the domain; 

f  is the groundwater flux density on B ; 

w  is a test function. 

 
The approach used in NAPSAC allows considerable flexibility in the number and location of the 
global nodes.  This allows highly refined models to be used for accuracy or coarser models to be 
used in order to keep computational costs down as appropriate.  However, the details of the 
method are quite complicated in the most general case.  Therefore, the basis of the approach is 
first presented in the case in which the global nodes are identical to the local nodes on the 
intersections (see Figure 6), and then the modifications for more complicated cases are indicated.  
In the simplest case, the finite-element equations that characterise the global basis function for 

node I  (denoted Iψ  in this case) are 

0
12

3

=∇⋅∇∫
F

In

e
ψ

µ
φ   , for local nodes n  not on intersections, (3.5) 

 
supplemented by the boundary conditions 
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 =

=
else

Itoingcorrespondinodelocaljfor
I

0

1
ψ   , for local nodes j  on the intersections.

 (3.6) 
            

 

Figure 6. Intersections on a fracture in the case in which they lie along finite-element 

boundaries and the global nodes correspond to the local nodes on the 

intersections. 

These equations can be readily solved using a suitable numerical scheme.  In NAPSAC, a direct 
solver, which employs a variant of Gaussian elimination, is used.  The solver is purpose-built to 
exploit the structure of the numerical equations resulting from the regular form of the finite-element 
grid used in NAPSAC.  Essentially, the equations for the nodes at the centre of each rectangular 
block (see Figure 5) are eliminated first, to give a matrix with the same form as that for a regular 
rectangular discretisation.  This matrix is then solved used straightforward Gaussian elimination.  
This is a very efficient approach. 
 

It can easily be seen that the global basis function for global node I  is equal to the local basis 

function for the local node i  corresponding to I  plus a linear combination of local basis functions 

for local nodes n  not on intersections, that is  

∑+=
n

nIniI b φφψ   ,  (3.7) 

for certain constant coefficients Inb (which depend on the geometry of the fracture and its 

intersections). 
 
Because of the linearity of the flow equation, the finite-element solution for steady-state flow on a 

fracture in the case in which the residual pressure has values 
R

IP  at the global nodes is given by a 

linear combination of the global basis functions: 
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I

I

R

I

R
PP ψ∑=ˆ   .  (3.8) 

It is easy to see that this ensures that the residual pressure is continuous between intersecting 
fractures (condition (i) above), because on each fracture the residual pressure on the intersection is 
given by the same interpolation between the global nodes on the intersection. 
In accord with the basic Galerkin approach, condition (ii) above is imposed in a weak way: 

0)()(
fracturesngintersecti

=∫∑ αααψ dQ fractureI   ,  (3.9) 

where 
α  is a coordinate along the intersection; 

)(αfractureQ  is the flux to the intersection on the fracture. 

 
A key issue is how the flux to a fracture intersection is calculated.  In fact, in order to impose the 
constraint of Equation (3.9) it is not necessary to calculate the flux itself, but only the integrals that 
appear in equation (3.9).  These are calculated from the following quantities 

∫ ∇⋅∇−=
F
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φ   .  (3.10) 

 
As can be seen from Equation (3.4), if, rather than specifying a Dirichlet boundary condition on an 
intersection, the flux to the intersection were specified to be Q, then the finite element equation for 

a local node i  on the intersection would be 

QP
e

i

F

R

i ∫∫ =∇⋅∇−
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3

ˆ
12

φ
µ

φ   .  (3.11) 

 

The left hand-side of this equation is just iQ  so that it can be seen that it is natural to call this the 

flux to node i  on the intersection. 

 
Now, from Equation (3.6), 

iI φψ =   on the intersection containing i   (3.12) 

where i  is the local node corresponding to global node I . 

(This is because all the other local basis functions appearing in Equation (3.5) are zero on the 
intersections.)  Thus, the integral that appears on the right-hand side of Equation (3.9) can also be 
written as 

QI∫
onIntersecti

ψ   .  (3.13) 

 

Therefore, the quantities iQ  give the natural way to evaluate the integrals appearing in Equation 

(3.9).  Further, it should be noted that iQ  can be expressed as 
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using Equation (3.5). 
 
The flux on a fracture to a node on an intersection calculated as described above is a linear 
combination of the residual pressures at the global nodes on the fracture.  The equations for the 
conservation of groundwater at a fracture intersection therefore give linear relations between the 
residual pressures at the global nodes on the intersecting fractures.  These equations, together 
with any boundary conditions on the fracture-network model provide the overall set of discretised 
equations for the residual pressures at the global nodes.  In NAPSAC, these equations can be 
solved using either a direct solver or a preconditioned conjugate gradient method. 
 
It is worth noting that the approach described above leads to the equations that would be obtained 
were the finite-element approach to be applied directly to all the fractures together, with the basis 
functions for a node on an intersection being taken to be defined on both intersecting fractures in 
the obvious way.  That is, on each fracture, the basis function would have the form of the basis 
function for the appropriate local node.  This result is almost trivial because the equation for the 
conservation of groundwater for a global node on the intersection would then just be the sum of the 
contributions to the finite-element equation for the basis functions for the corresponding local node 
on each fracture, which is exactly what is obtained for the corresponding overall basis function 
defined as above.  This is exactly the same as Equation (3.9).  Thus the approach is a very natural 
one. 
 
In the discussion above, the approach used in NAPSAC has been presented for the simplest case 
in which global nodes are identical to local nodes on fracture intersections.  However, NAPSAC 
allows considerable flexibility about the number and position of global nodes on intersections.  
(This means that highly refined models can be used for accuracy or coarser models can be used in 
order to keep computational costs down, as appropriate.)  The flexibility about the global nodes 
complicates the analysis slightly. 
 
First, there may be fewer global nodes along an intersection than local nodes.  This can readily be 
handled by a minor extension of the approach previously described.  It is simply necessary to take 
the global basis functions to be the appropriate linear combinations of the global basis functions 
described above.  In fact 

)()()( αψαα jj

j

II ∑Ψ=Ψ   .  (3.16) 

This is illustrated in Figure 7. 
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Figure 7. The relation of local and global basis functions on an intersection in a case in 

which there are fewer global nodes than local nodes on the intersection 

Second, it is possible that two (or more) fracture intersections may themselves intersect.  (Although 
the probability of more than two intersections intersecting is vanishingly small for the physical 
fractures, it is quite possible that this may occur in the NAPSAC model with fractures approximated 
to lie along element boundaries.)  Provided that there are global nodes at the ‘multiple intersection 
points’ where two (or more) fracture intersections, then the discussion above applies unchanged.  
However, if global nodes are not present at multiple intersection points, then the residual pressure 
and the groundwater flux are effectively double counted at the multiple intersections, because there 
are separate contributions to the residual pressure (or flux) from each intersection.  In order to 
avoid this double counting, the global basis functions are modified by reducing the contributions 
form the local node associated with a multiple intersection point.  The contribution to each affected 
global basis function is divided by the number of fracture intersections crossing the local node, that 
is  

)()(
1

)( αψαα jj

j

I

j

I
N

∑ Ψ=Ψ   ,  (3.17) 

where jN  is 1 if there is a global node at local node j , and the number of fracture intersections 

intersecting at node j  otherwise.  This is illustrated in Figure 8.  The approach introduces an 

approximation, which was tested during the development of NAPSAC and found to be acceptable. 
The fluxes to the global nodes are calculated from  
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which is a straightforward extension of Equation (3.14).  These fluxes are used, for example, in the 
approximate particle tracking calculations.   
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Figure 8 The global basis functions for a case in which fracture intersections intersect. 

(a) the basis functions for the global nodes (b) the construction of the basis 

functions on fracture intersection from the basis functions for local nodes 
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The calculation of steady-state groundwater flow is illustrated in Figures 9 and 10.  Figure 9 shows 
an example of the pressure distribution on the network scale for a network of 12,601 random 
fractures. Figure 10 gives an example of the pressure distribution on the finite-element scale for a 
network of 8 known fractures. 
 

 

Figure 9 The pressure distribution on the network scale. Each fracture is coloured 

according to the mean pressure on the plane. Red indicates high pressure, blue 

low pressure. The flow domain is an annular region built from 12 hexahedra. 

Flow is from the external surface to the internal surface to model inflow to a 

tunnel. 
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Figure 10 The pressure distribution on the scale of the finite-elements for a network of 8 

fractures. Red indicates high pressure, blue low pressure. 

 

3.4 Full Permeability Tensor 
The approach adopted to the calculation of the full permeability tensor, that is, all six independent 
components, kxx, kyy, kzz, kxy, kyz, kzx is as follows.  Consider a rectangular block of a continuum 
porous medium with an anisotropic permeability tensor with components kij.  For a given head 
gradient with components Gi, the specific discharge would be 
 

∑−=
i

jiji Gkq  .         (3.19) 

 
The fluxes through the faces of the block are given by 
 

jiji

i

ii GknAqnAQ ∑∑ == ααααα ,      (3.20) 

 
where nαi are the components of the normal to face α with area Aα. These fluxes vary in a simple 
way with the imposed head gradient. 
 
Now consider a similar block composed of fractures.  Using NAPSAC, the fluxes through the faces 
of the block can be calculated for a specified head gradient imposed as a boundary condition on 
the block.  These fluxes will vary with the imposed head gradient. The variation is unlikely to be as 
simple as the variation of the fluxes through the faces of a block composed of an anisotropic 
continuum porous medium.  However, one can look for the best fit to the variation of the fluxes 
through the block composed of fractures in terms of the variation of the fluxes through an 
anisotropic continuum porous medium.  The corresponding permeability tensor provides, in an 
average sense, the effective permeability tensor for the block composed of fractures. 
 
In practice, rather than fitting to the variation of the fluxes through the faces of the block as 
continuous functions of the imposed head gradient, the fit is made to the fluxes for a modest 
number of directions of the imposed head gradient.  In the current implementation in NAPSAC, the 
head gradients may be specified by the user, or their directions may be chosen automatically in the 
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following manner, which is designed to avoid directional bias, as far as possible.  A number of 
randomly oriented regular icosahedra centred on the origin are chosen.  Then the directions of the 
head gradients are taken to be along the lines from the centre to the mid-points of the sides of each 
icosahedron.  (There are 15 such lines for each icosahedron.)  This gives a uniform coverage of 
direction. 
Thus the components of the effective permeability tensor are obtained by minimising  

∑ ∑ 
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where βαQ is the flux through face α for imposed gradient .βαG  (Here β indexes the imposed 

head gradients.) 
 
This leads to the `normal equations' (see for example Reference [12])  
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(It should be noted that only six components of the permeability tensor are independent, namely 
kxx, kyy, kzz, kxy = kyx, kyz  = kzy, kzx = kzx ) 
 
Equations (3.22) and (3.23), which are a system of linear equations, are solved by Gaussian 

elimination.  The quantities iiGnA βαα  and )( ijji GnAGnA βααβαα + are called the basis functions.  

The inverse of the matrix for the system is called the covariance matrix and is closely related to the 
uncertainties in the parameter estimates obtained by the least-squares fitting. 
 

3.5 Efficient Implementation 
It is important to make the effective permeability calculations as efficient as possible. 
In fact, the calculation of the full permeability tensor is implemented in such a way that its 
computational cost is little more than that of computing the flow through the block for a single set of 
boundary conditions. 
The reason for this is as follows.  The discretised flow equations for the network can be written in 
matrix notation as  
 

bAx = ,         (3.24) 

 
 where 
 
x is the vector of unknowns, that is the residual pressures (or effectively heads) at the internal 
nodes of the model; 

b is the right-hand side vector of specified residual pressures (heads) on the boundary. 

 
NAPSAC uses a direct Gaussian algorithm to solve these equations.  The method is equivalent to 

making a decomposition of A into the product LU of a lower triangular matrix L and an upper 

triangular matrix U followed by successively solving  

 

bLy = ,          (3.25) 

   

yUx = .         (3.26) 
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The computationally expensive step in this procedure is the determination of the LU-
decomposition.  Relatively speaking, equations (3.25) and (3.26) are very cheap to solve.  Once 
the LU-decomposition has been made, it is therefore possible to solve the matrix equations for a 
number of different right hand sides very cheaply. This is exactly what is required to calculate the 
flows for the different imposed head gradients.  The various gradients are defined by specifying the 
corresponding distribution of head around the boundary of the block.  In this way, a very efficient 
method for calculating the full effective permeability tensor is obtained. 
 

3.6 Calculation of Effective Permeabilities for Many Blocks 
One application of this facility is the calculation of effective permeabilities in a study of upscaling.  
Such studies require the calculation of the distribution and correlation structure of the effective 
permeabilities.  An option is therefore available to generate a realization of a fracture-network in a 
specified region, and then automatically calculate effective permeability tensors for each block in a 
subdivision of the region.  It is then possible to analyse the statistics of the data obtained using this 
option in order to estimate the correlation structure of the effective permeability. 
 

3.7 Effective Permeability of an Internal Block 
The facility to calculate the permeability for many blocks provides a very powerful tool.  However, 
the issue of boundary short-circuits needs to be considered.  As discussed above, the algorithm is 
based on calculating the flows through the block of interest for a number of different imposed head 
gradients, which are specified in terms of imposed heads on the boundaries of the block.  However, 
it is possible that there are one, or more, highly transmissive fractures within the block directly 
connecting an inlet face with an adjacent outlet face (see Figure 11) 
 

inlet face

boundary
short circuit

block of

outlet face

outlet face

 

Figure 11 Schematic of short circuits in a two-dimensional case. 
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Because of the imposed head boundary conditions there are large flows through such fractures.  
This leads to an estimate of the effective permeability that is biased towards high values. The 
problem arises because of the interaction of such short circuits with the imposed boundary 
conditions.  Consider the behaviour of the block in question in the context of the surrounding 
network.  It is unlikely that the imposed head would be present across such a short circuit.   
 
Rather, because of its high transmissivity, the head drop across the short circuit would be small, 
with most of the head drop being taken up by other fractures.  One limiting case, which is shown in 
Figure 11 is that of a short circuit that is not connected beyond the block in question.  In the case 
shown in Figure 11 when the surrounding network is taken into account the head in the short circuit 
would actually be constant, and there would be no flow in the short circuit, whereas if the block was 
considered in isolation, the short circuit might well completely dominate the flows through the block 
and hence the calculated effective permeability. In order to address this problem it is necessary to 
modify the procedure for calculation of the effective permeability tensor.  This modification 
introduces a `guard zone' around the block of interest.  This allows the effective permeability of the 
block to be calculated in the context of the surrounding network, so the effect of short circuits is 
restricted to the guard zone.  In practice, it is necessary to choose a guard zone of a sensible size, 
which depends on the distributions of the fracture properties. 
 

3.8 Transient Flow Modelling 
As the field experiments from which the data to generate fracture-networks are derived usually 
involve transient flows, a transient flow modelling capability has been developed in NAPSAC. An 
approach consistent with the steady-state approach is adopted. This ensures that the code is 
applicable to the complex networks that the steady-state code is able to handle. The equation 
describing transient flow through a fracture-network is  
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 where S is the fracture storativity which is dependent both on fluid and rock compressibility. The 
choice of a suitable model for fracture storativity is important for an accurate transient flow model. 
Three models for fracture storativity are available in NAPSAC:  
 

;gAeS ρ=         (3.28a) 

];/1[ feCRKNgS += ρ        (3.28b) 

.b
TS α=         (3.28c) 

 
Here A, RKN, Cf, α and β are constants that can be specified by the user. 
 
The fracture-network is discretised in the way described in Subsection 3.2 and a backward 
difference is used to approximate the time derivative. The finite-element equation to be solved for 
the pressure values at the global flow nodes becomes  
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 (3.29) 
 

This equation is solved for a fixed timestep t∆  to give 
nRP ,
 the residual pressure solution at time 

.tnt ∆=  The second term on the left-hand side of this equation is simply the flux term, 
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        (3.30) 
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that appears in Equation (3.18), and the first term on the left-hand side of this equation will be 
referred to as the storativity term  
 

∑ +

J

nR

JIJ PS ,1,
        (3.31) 

 
The second step of a transient groundwater flow calculation is analogous to that in the steady-state 
calculation. The contributions from the individual planes to the global matrix are calculated. As 
before, the contributions to the flux term from each plane are evaluated by solving the mass 
conservation equation on each plane subject to a number of different boundary conditions.  In 
addition, the contributions to the storage term are evaluated for each fracture plane. 
 
These contributions are then assembled into the global matrix, ready to start timestepping. In order 
to simplify generating the right-hand sides of equation (3.30) for each timestep, two global matrices 

are assembled, one containing the flux term, IJF , and the other containing the storativity term, IJS . 

It is assumed that the boundary conditions are fixed with respect to time, and therefore can be 
imposed by deleting terms from the storativity matrix and changing the flux matrix in the same way 
as for the steady-state model. A boundary condition vector is constructed at this point. The two 
global matrices are added together, component by component, to form one global matrix. The 
resulting global matrix and the boundary condition vector are unchanged for all timesteps of the 

same size, since they depend on time only through the timestep size .t∆  

 
The third stage of the transient groundwater flow calculation is to solve the matrix equations for 
each timestep.  The right-hand side of equation~(3.29), for the first timestep, is evaluated by 
multiplying the storativity matrix by an initial solution which is prescribed by the user. This initial 
solution may be a constant pressure, a linearly varying pressure or an existing solution previously 
found by NAPSAC. The contribution from the boundary conditions is added to this right-hand side 
and the matrix equation (3.29) is solved using the same direct frontal solver as for a steady-state 
calculation to produce the pressure solution at the first timestep. This solution is used to evaluate 
the next right-hand side and the timestepping loop is repeated producing a sequence of solutions 
P

n+1
 which define the flow field at the (n+1)-th timestep. 

 
As with steady-state problems, this method allows quite coarse meshes to be used on very large 
systems. However more detailed refinement might be required for smaller networks, or near 
sources and sinks. To deal with this the transient model permits optional local refinement for 
significant fractures. This option involves solving the transient mass conservation equation on the 
fracture and then adding this contribution to the refined matrix. At each timestep the local pressure 
solution is saved on the finite-element mesh of the refined plane and this solution is used to 
calculate the next solution to the transient mass conservation equation on the refined plane. 
 

3.9 Engineered Features 
Close to a point where an engineered feature intersects a fracture, the pressure field behaves like 
that within a parallel plane having a single sink: 
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 where wP is the wall pressure, r is the distance from the engineered feature, wr  is the engineered 

feature radius and Q is the volumetric flow rate from the engineered feature into the fracture. 
 
This logarithmic behaviour is poorly approximated by a regular linear finite-element discretisation, 
and so a correction is applied to the residual pressure calculated by the finite-element method at 

the engineered feature, PEP , using the analytical solution in equation (3.32), to obtain the wall 

pressure, wP   
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Γ
+=

Q
PP PEw         (3.33) 

 

where Γ is a productivity index, which is dependent on the size of the finite element mesh, the 
feature radius and the transmissivity of the fracture. Although this model is based on a steady-state 
analytical solution, tests have shown that the correction factor to be reasonable when modelling 
transient flow. 
 

3.10 Two-dimensional Networks 
For formations with very high aspect ratios, a simplification to a two-dimensional network may be 
justified. Alternatively when approaches to complex physics are being developed it may be 
necessary to simplify the geometry by approximating a three-dimensional network by a two-
dimensional one.  A two-dimensional version of NAPSAC was developed.   This uses much of the 
existing three-dimensional code. The flow model and the approach used to solve the equations are 
analogous to the three-dimensional version. The network can be considered as a slice through a 
three-dimensional network in the x-z coordinate plane, with constant flow in the y-direction, and 
mass conservation governing flow through the fracture. The fractures are represented as straight-
line segments, and are defined by an orientation angle, a length and an effective aperture. As in 
three-dimensional simulations, the parameters describing each fracture may be sampled from 
statistical distributions. A more physical way of generating a two-dimensional network, and the one 
usually adopted, is to generate a three-dimensional fracture-network and to map traces onto a 
plane. 
 
The flow solution in the two-dimensions is less complicated than in three-dimensions. The flow field 
is discretised by assigning one global flow node to each intersection between fractures. Linear 
basis functions, which are zero outside the fractures, are defined at each node J by  
 

1=ΨJ   at node J,      (3.34a) 

0=ΨJ   at node I ≠  J,      (3.34b) 

 
and are defined by linear interpolation along fractures between nodes.  The contributions to the 
matrix equations for each plane are calculated directly without needing to calculate the response 
functions on each plane. Boundary conditions are imposed and the resulting matrix equation is 
solved using the direct frontal solver. 
 

3.11 Modelling the Effect of Stress on the Fracture Network 
NAPSAC is designed to deal with complex fracture-networks, and as a consequence it is only 
practical to incorporate relatively simple models for the effect of stress on flow (hydro-mechanical 
coupling). The effect on the flow of a change in stress caused by disturbing the surrounding 
fracture-network, for example by drilling a repository tunnel, can be calculated. The network is 
assumed initially to be in hydro-mechanical equilibrium, with the apertures of the fractures being 
those that apply to the in-situ network under the specified equilibrium stress field.  NAPSAC does 
not calculate the stress field directly. An analytical solution may be used to determine the changed 
stress field, or the results of field experiments can be used to obtain an empirical specification of 
the changed stress field. Thus the normal stress acting at any point on a fracture may be 
calculated. 
 
Having calculated the change in normal stress, a stress-aperture coupling is used to change the 
fracture aperture. In three-dimensions, the change in aperture for each finite-element is computed 
from the value of the normal stress at the centre of the finite-element. 
In two-dimensions, the change in normal stress acting on the fracture is calculated at the centre 
point of each section of fracture between intersections. 
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There are several stress-aperture couplings available. Three that have been used in NAPSAC 
modelling [13] are  
 

,constantT =          (3.35a) 

( ) ασσ −
= 00 // nnTT        (3.35b) 

).,/)(max( min00 eRKNee nn σσ −−=      (3.35c) 

 
In the first coupling, the transmissivity, T, of each fracture is assumed to be unchanged by the 
excavation of the tunnel. NAPSAC directly converts transmissivities into apertures using the 
parallel-plate law, as defined by equation (3.3), and so the apertures remain constant. The second 
coupling is a compliance law relating the change in fracture transmissivity, T, to changes in normal 

stress, nσ through a power law with exponent α . The value of α is obtained from laboratory tests 

carried out on the rock. For fractured rock α typically has values between~0.1 and~1.0.  The third 

law relates the change in aperture, 0ee −  directly to the change in stress and the fracture normal 

stiffness, RKN. It is necessary to define a minimum aperture, mine  to ensure that all apertures 

remain positive, and to reflect the physical reality that fractures can only be compressed so far. 
Again, the results of laboratory tests are used to determine the value of RKN. 
 

3.12 Tracer Transport 
The tracer transport option in NAPSAC is designed to calculate the migration and dispersal of 
tracer through a discrete fracture-network. Within the groundwater, it is assumed that tracer 
transport is dominated by advection, so that molecular diffusion can be ignored, and the major 
cause of dispersion is due to the existence of a number of different paths through the fracture 
network. It is also assumed that the fracture apertures are small enough that the tracer diffuses 
quickly across the aperture. 
 
The transport calculations are based upon a particle-tracking algorithm. The problem is split up into 
the calculation of single fracture responses followed by the calculation of the transport of a particle 
swarm through the network. For each fracture plane a representative number of pathlines between 
the intersections on the plane are calculated. Intersections are discretised by transport nodes and 
pathlines are calculated from each transport node. There are two algorithms available for 
calculating these pathlines, ‘exact particle tracking’ (with standard and mass-conserving methods) 
and ‘approximate particle tracking’. Each algorithm is described in the following sections. 
 

3.12.1 Exact Particle Tracking (Standard Method) 

For each fracture, the flow field is discretised in terms of linear triangular finite-elements. The flow 
is determined by the pressure field, and since the pressure varies linearly over each triangle, the 
groundwater velocity,  

,
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q
       (3.36) 

 
is constant on each element. The pathlines are calculated on each fracture by stepping the path 
across the mesh, one element at a time. On reaching a fracture intersection, the path is complete. 
Once the pathlines from the transport nodes on each fracture plane have been calculated, the 
possible connections for that node are determined. A list of possible destinations, travel-times, 
distances and relative probabilities for a particle leaving each node are calculated. In this way, a 
library of paths is created for every transport node in the network. The model relies on the 
calculation of a very accurate flow solution. If a low accuracy solution is used, then problems with 
local flow sinks on fractures may occur, resulting in the loss of a significant fraction of the particle 
swarm. 
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3.12.2 Exact Particle Tracking (Mass-conserving Method) 

The standard method of exact particle tracking using the finite-elements does not guarantee 
conservation of mass in the flows between elements. Effectively there are sinks or sources at finite-
element boundaries and nodes.  This can cause problems for particle tracking calculations 
because particles can become ‘trapped’ or ‘lost’ at the sinks. However, the mass-conserving 
method (introduced with NAPSAC version 9.3 as the default) does conserve mass between 
elements. It does this by using a method proposed by Cordes and Kinzelbach [22]. This method 
takes each NAPSAC triangular finite-element and sub-divides it into four sub-triangles. The velocity 
within each sub-triangle is then calculated in such a way as to conserve mass between elements 
and sub-triangles. The set of sub-triangles around each finite-element node is termed a patch. The 
velocity calculations are carried out patch by patch, with the calculations for each patch 
independent of those of the others. The velocities for the middle sub-triangles that are not part of 
any patch can be calculated from the finite-element pressures. This keeps the scale of the 
calculations small and velocities only need to be calculated for those patches or middle sub-
triangles that particles enter. 
 
Figure 12 shows the sub-triangle patch for a non-boundary, non-intersection node. The black lines 
are the element edges and the red lines are the sub-triangle edges. The purple arrows are the 
fluxes across the sub-triangle edges and the green arrows are the velocities for the sub-triangles. 
 

 

Figure 12  A sub-triangle patch for a non-boundary, non-intersection node. 

The fluxes entering or leaving the patch (Q1 to Q4) can be calculated directly from the finite-
element pressures. The fluxes through the edges connected to the node can be calculated by 
applying the following constraints: 

a) There is no net flux into or out of a sub-triangle, e.g. Q5 = Q1 + Q8; 

b) The fluxes entering or leaving the patch sum to zero, i.e. Q1 + Q2 + Q3 + Q4 = 0; 

c) The integral of the head gradient around the node is zero (the irrotationality constraint). 
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The velocity in each sub-triangle can be calculated directly from the fluxes entering or leaving it. 
Note that for the middle sub-triangles (those not connected to an element node), the fluxes, and 
hence velocities, can be calculated directly from the finite-element pressures. 
 
Figure 13 shows a boundary node on the edge of a NAPSAC fracture. There is no flow across the 
boundary and so fluxes Q5 and Q9 will be zero. Fluxes Q1 to Q4 can be calculated from the finite-
element pressures.  Since flux is preserved between sub-triangles, this enables fluxes Q6 to Q8 to 
be calculated and hence the sub-triangle velocities. 
 

 

Figure 13  A sub-triangle patch for a boundary node. 

Figure 14 shows a node on a fracture intersection, with the intersection edges highlighted in blue.  
 
Because flow can be entering or leaving the fracture through the intersection then constraints b and 
c above are no longer true. In this case, the patch is split into segments, with each segment being 
the sub-triangles between a pair of intersection edges. Then each segment is treated separately 
since the fluxes on each side of the intersection are not necessarily equal, e.g. Q7 may not equal 
Q8. For each segment, the sum of the fluxes entering or leaving the patch through sub-triangle 
edges, e.g. Q1 + Q4, must equal the sum of the fluxes entering or leaving the intersection, e.g.  Q5 
+ Q7.  The fluxes entering the patch through the sub-triangle edges can be calculated from the 
finite-element pressures and it is possible to assign this flux to the intersection edges. This enables 
the remaining fluxes, and hence the velocities, to be calculated. A similar approach is taken for 
very short, i.e. point, intersections and for boreholes, but in this case the flux is assigned to the 
node itself and the radial flow component is taken into account. 
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Figure 14  A sub-triangle patch for an intersection node. 

Once the velocities have been calculated, the particle paths between the transport nodes can be 
calculated using a stepping method, where each step is between a sub-triangle edge. In the case 
of a point intersection or borehole node, a radial flow component is present in the sub-triangles 
around the node, which requires a time-stepping approach within those sub-triangles. Information 
on the paths is stored in the same way as for the standard method. 
 

3.12.3 Approximate particle tracking 

NAPSAC is able to create a database that records the net flux between all the intersections for a 
flow solution. This network of flux connections links the centre of every intersection on a given 
fracture with every other intersection centre on the fracture. A transport option has been developed 
that is based on this flux database in which particles are transported between intersections. This is 
a more robust method than exact particle tracking as it does not need a highly accurate flow 
solution, just a good flow balance at the network intersections.  It is also more computationally 
efficient. One disadvantage is that this model cannot accurately model dispersion on a single 
fracture. However, where dispersion is dominated by the different paths through the network rather 
than dispersion on an individual fracture plane, these inaccuracies may be small and so this 
method is most appropriate for large networks. The accuracy of the calculation for transport across 
any fracture can be improved by tessellating fractures which effectively increases the discretisation. 
Figure 15 shows 30 particle tracks based on approximate particles tracks for a simple random 
network. The paths clearly demonstrate the heterogeneities in flow due to variations in network 
connectivity and fracture transmissivity. 
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Figure 15  An example of a particle tracking calculation for 30 particles starting at the 

same injection borehole interval (located centrally and vertical) and dispersing 

outward toward the vertical boundaries. Flow is radially outward from the 

injection borehole. 

The next step in the transport calculation consists of following a large swarm of particles across the 
network. Particles can be started on any surface of the fracture-network region where there is an 
inflow or from any number of engineered features. Particles are tracked through the network from 
node to node, building up the path taken by each of the particles using the information calculated in 
the first step. Figure 16 is an example of a breakthrough curve for particle tracking across a simple 
cuboid region. 
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Figure 16 An example of a breakthrough curve based on 1000 particle tracks through a 

small random network. The jagged line is the cumulative curve based on the 

particle tracks. The smooth curve is a fit to the data based on a two-parameter 

advection-dispersion curve. 
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3.13 Coupled Groundwater Flow and Salt Transport 
NAPSAC includes an option for modelling coupled groundwater flow and salt transport. Both 
steady-state and transient modelling can be undertaken. 
 
The equations characterising transient coupled groundwater flow and salt transport in an individual 
fracture are 
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e  is the effective hydraulic aperture, which may vary between fractures and within a fracture; 

ρ  is the groundwater density, which is a function of the salinity; 

µ  is the groundwater viscosity, which is a function of the salinity; 

RP  is the residual pressure; 

0ρ  is a reference groundwater density, for example that of freshwater; 

fg  is the projection of the gravitational acceleration onto the fracture plane; 

c  is the groundwater salinity; 

t  is time; 

D  is the dispersion tensor.  This includes contributions from diffusion and from hydrodynamic 
dispersion.  The latter is usually taken to be proportional to q  with different values along and 

perpendicular to the flow; 

∇  denotes the two dimensional gradient operator in the fracture. 

 
The equations for the overall network comprise these equations for each fracture, together with the 
conditions at a fracture intersection that the pressure and salinity are continuous across the 
intersection and the rates of flow of water and salt per unit length out of one fracture are equal to 
the rates of flow of water and salt per unit length into the other fracture. 
 
Transients are handled by expressing the time derivatives as finite differences.  Generally, fully 
implicit differences are used in NAPSAC. 
 
The equations are non-linear. The straightforward and most accurate way to generalise the 
approach described in subsection 3.3 to deal with this would be simply to use an iterative approach 
such as Newton-Raphson iterations to handle the non-linearity for both the global nodes and for the 
local nodes within fractures. At each iteration, updates for the residual pressure and the salinity at 
the global nodes would be determined. This would be done by solving the equivalents of 
Equation (3.9). This would take into account the non-linearity. Then updated versions of the global 
basis functions on each element would be determined by solving the equivalents of Equations (3.5) 
and (3.6). This would take into account the non-linearity of the equations for each fracture. This 
would be repeated until satisfactory convergence was achieved. 
 
However this approach would be very costly computationally. The calculation of the global basis 
functions for each time step would cost about two orders of magnitude more than the calculation of 
the global basis functions for the case of steady-state constant density groundwater flow. (Twice as 
many basis functions would have to be calculated, twice as many cases would have to be 
considered in the determination of the global basis functions, the matrices in the calculation of each 
basis function would be twice as large so the calculation for each basis function might cost about 
eight times as much and the calculations would have to be done for say five Newton-Raphson 
iterations for each time step.) Further, the calculation of the global basis functions would have to be 
repeated for each timestep. 
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Therefore an approximate approach is adopted that is much less expensive computationally. The 
basic idea of the approach is as follows. The global basis functions derived for the case of steady-
state constant-density groundwater flow effectively provide a set of basis functions that can be 
used directly in the Galerkin approach for the calculation of the residual pressure at the global 
nodes. The key point is that for steady-state constant-density groundwater flow, the discretised 
equations for the residual pressure at the global nodes can be expressed in terms only of the 
global basis functions without directly involving the local basis functions (see Equation (3.8)). In the 
approximate approach, the salinity is also represented as a linear combination of these global basis 
functions. 
 
Thus 
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The discretised equations for coupled flow and transport of salinity are then 
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Together with the boundary conditions on the overall boundary of the network. 
 
The key benefit of this approach is that, as indicated, it is much less expensive computationally 
than the straightforward approach. The approach involves an approximation. Effectively the 
variation of salinity within a fracture is represented using functions with a small number of degrees 
of freedom (the number of global nodes), whereas in the straightforward approach the variation of 
salinity would be represented using functions with a much larger number of degrees of freedom 
(the number of local nodes).  However, in many cases, the variation of salinity over individual 
fractures may be relatively small, and in such cases the approximate method is likely to provide a 
good approximation.  If some fractures are sufficiently large that the salinity varies significantly over 
the fractures then the fractures can be tessellated, so that the variation over each tessellate is 
relatively small. 
 
Figures 17 and 18 show the distributions of residual pressure and salinity calculated for a steady-
state case (a variant of the so-called Henry test case [23]). The results are physically reasonable 
and in reasonable accord with the results for the Henry test case. 
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Figure 17 An example of the distribution of residual pressure for a calculation of coupled 

groundwater flow and salt transport. (Unconnected fractures are coloured grey.) 

 

Figure 18 An example of the distribution of salinity for a calculation of coupled 

groundwater flow and salt transport. (Unconnected fractures are coloured grey.) 
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4 NAPSAC Output 
The problems modelled by NAPSAC can be highly complex, so it is useful to have a variety of 
ways of displaying output from the model, in order to facilitate the interpretation of results.  
 

4.1 Standard Output File 
During the model generation and calculation phases of a NAPSAC run, text based summary output 
is written to the ASCII standard output file (.out file). This contains information such as a summary 
of the statistical properties of the fractures generated, groundwater fluxes through surfaces, 
pressures and fluxes to engineered features. Some output options generate further text based 
output, such as the option to sample fractures along hypothetical cores.  
 

4.2 Graphical Output 
Most output options produce graphical output via an internal graphics package that creates flat plot 
(2D) images in PostScript format.  
 
Some options draw perspective diagrams illustrating views of the network in three dimensions. The 
user has complete flexibility to specify the point from which the network is observed, but may 
instead choose from a set of standard view options. For clarity, lines hidden from the observation 
point by other parts of the network are not shown in the picture. 
 

4.3 Inspecting the Network 
There are several options that allow detailed inspection of the fracture-network, including one that 
simply draws a perspective diagram of either the whole system or a specified subset of fractures. 
Another option (`trace mapping') can be used to examine any (plane) cross-section through the 
network. As well as producing a diagram showing where fractures intersect the cross-section, it can 
scan along selected lines in the plane, reporting information on all the intersections encountered. 
 
This information consists of the distance from the start of the scan line, and the angle at which the 
fracture was crossed, and the length of the intersection of the fracture with the cross-section plane. 
 
There is also a facility for probing the network with line segments similar to boreholes. The `core 
logging' option produces both geometrical and hydraulic information for all fractures crossed by the 
line segment.  This includes the distance from the start of the segment, the dip direction and dip 
angle of the fracture, the angle relative to the core, the fracture set number, the aperture and 
transmissivity of the fracture. 
 
Another option is useful when simulating the local variation of the aperture over individual fractures. 
This produces maps of the aperture width on one or more fractures, with contours at equal intervals 
of the logarithm of the aperture. In addition, one can request the printing of data on the two-point 
correlation of apertures. 
 

4.4  Examining the Pressure and Flow Solutions 
There are many options available to display the flow solution.  The user may request a plot of the 
fracture-network showing pressure contours or flux vectors, represented by arrows, on fractures.  
Plots of pressure on individual fractures may also be requested.  Pressure profiles in which graphs 
of pressure against distance along a line segment through the network are plotted can be drawn for 
steady-state and transient flow options.  Plots of pressure at a point against time are also available. 
When locally-varying apertures are specified, histograms of fluxes across a line within a fracture 
can be plotted. 
 
The `pipe' model is a tool for analysing the solution of the flow problem by representing each of the 
fractures in the network by a collection of pipes. Every pair of intersections in a fracture is 
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connected by a set of pipes, which contains a pipe joining every node on one intersection with 
every node on the other. It should be understood that the fluxes in the pipes only represent an 
approximation to the flow field in the fracture. They are computed from exact solutions of the 
pressure at the nodes and the global response matrices. The pipe model can be used to estimate 
the flux that crosses a series of parallel plane rectangular surfaces. 
 

4.5  Tracer Transport 
Several types of diagram are available for displaying the results of tracer transport simulations.  To 
look at the results of a large swarm of particles sent through the network, graphs showing the 
proportion of particles leaving the network as a function of time or path length are available. The 
number of particles is scaled by the total number released to show a `breakthrough curve'. A 
cumulative arrival curve is plotted by integrating the number of particles arrive as a function of time.  
 
This plot also includes a curve derived by fitting an analytical solution of the advection-dispersion 
equation to the times by which 25% and 75% of the particles have left the system. 
 
A three-dimensional view of the network showing the swarm of particles at user specified times or a 
diagram of a boundary surface showing the arrival of particles can also be selected.  Individual 
particle tracks can be investigated by producing a three-dimensional plot showing the tracks or by 
plotting graphs showing aperture against time or distance for individual particle tracks. 
 

4.6  3D Visualisation 
The most powerful way to understand and interpret the results of a 3D network simulation is 
naturally to visualise the results in 3D. A complementary 3D visualisation software package has 
been developed specifically for NAPSAC. This is described in the next section. 
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4.7 GeoVisage for NAPSAC 
GeoVisage is a 3D visualisation software package designed to display the output from NAPSAC, 
NAMMU and ConnectFlow. GeoVisage displays in 3D all the features in a NAPSAC model, 
including the model region, fractures, engineered features and upscaling and their associated 
scalar and vector data. It is also able to carry out calculations on the model, including clustering, 
pathlines, and flux through a plane. In addition to displaying the NAPSAC model features it is also 
possible to overlay external data, such as maps. 
 
The capabilities of GeoVisage for NAPSAC include the interactive 3D visualisation of the following: 

� the fracture-network with each fracture coloured according to transient or steady-state 
properties such as aperture or pressure; 

� a reduced network with removal of fractures according to location or properties; 

� engineered features; 

� upscaling; 

� pathlines generated from multiple user-defined sources; 

� slices through the model; 

� clustering around engineered features or points. 
 
A snapshot of any screen can be saved as a 3D image using VRML  (Virtual Reality Modelling 
Language) format. The saved image can be viewed and manipulated in 3D using a web browser 
(for example Netscape). Alternatively, the screen can be saved in a 2D format such as PNG, 
JPEG, or PostScript. 2D images can be combined to create animated movies. 
 

 

Figure 21 A NAPSAC model coloured by total pressure in GeoVisage. 
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5 Quality Assurance 
A Quality Assurance (QA) programme defines a set of procedures for carrying out a particular type 
of work in such a way as to maintain the quality of the work.  A well designed QA programme plays 
an important role in computer program maintenance by ensuring that high standards of coding are 
adhered to. There are procedures for reporting and fixing program errors and that there is a system 
for testing and issuing new releases of the program which ensures that the new program gives the 
correct results for a standard set of test cases.   
 
NAPSAC is maintained and developed under an appropriate QA programme [21] by the 
Environmental Management Department of AMEC Limited.  The QA programme conforms to the 
international standard ISO 9000 and TickIT.  The Concurrent Versions System (CVS) is used to 
store all source code, documentation and test data for NAPSAC.  This automatically logs the 
author and date of each change to the system, and enables previous versions of the code to be 
accessed and recreated if necessary. All changes are thoroughly tested, and must be approved by 
the Software Manager before they are accepted.  A comprehensive set of approximately 40 test 
cases is used to test each new release.  Through the NAPSAC QA programme, AMEC Limited 
seeks to continually improve the quality and reliability of NAPSAC. 
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